
Virtual RAN 2024

Joe Madden

April 2024

New in this year's report: --Analysis of the AT&T / Ericsson deal and what it means for vRAN

--Fresh forecasts of vRAN adoption through 2032 --Operational efficiency and its role in vRAN

adoption --Life cycle cost analysis including anticipated 6G deployment

Abstract: A forecast for virtual radio access networks (vRAN) capacity, vDU and vCU instances, and software revenue for 4G, 5G, and 6G. The 2022-2032 forecast focuses on how vRAN will be adopted into the next major deployment cycle. Cost analysis compares the impact of centralization, virtualization, and openness. The report also breaks down the trends to virtualization in multiple ways to illustrate the key market segments.

MEXP-VIRT-24

TABLE OF CONTENTS

EXECUTIVE SUMMARY	6	
MARKET DRIVERS AND CHALLENGES	8	
Driver: Cost Reduction	8	
Driver: Network Uniformity	10	
Driver: Operational Efficiency	11	
Driver: Known Upcoming Upgrades	13	
Driver: Scalability	14	
Challenge: Weak spectrum roadmap coming up	16	
Challenge: China has de-coupled from Cloud RAN	17	
Challenge: Lock-in at a the chip level	17	
Challenge: Heat/Power Consumption	18	
LIFE CYCLE COST ANALYSIS	20 20	
CAPEX impact		
OPEX impact		
Case Study: Life Cycle Cost Analysis w. network upgrades		
VRAN COMMERCIAL STATUS		
MARKET FORECAST		
vBBU Forecast	33 35	
vDU Forecast		
vCU Forecast	41 46	
GLOSSARY		
METHODOLOGY	49	

CHARTS

Chart 1: vRAN Software Revenue, 2022-2032	7
Chart 2: Total Capacity deployed for Global RAN (Gbps deployed each year)	27
Chart 3: Virtual RAN capacity (Gbps deployed each year)	28
Chart 4: Virtual RAN (vBBU, vDU and vCU) Instances	29
Chart 5: Virtual DU and CU Instances	29
Chart 6: vRAN (vDU, vCU, vBBU) and COTS RU Software Revenue Forecast	30
Chart 7: Virtual RAN (vDU and vCU) Software Revenue Forecast	30
Chart 8: Virtual RAN Software Revenue Forecast, LTE, 5G, and 5.5/6G	31
Chart 9: Virtual RAN Software Revenue Forecast, Public vs Private Network	32
Chart 10: vRAN Software Revenue Forecast, Licenses v service revenue	32
Chart 11: vRAN Software Revenue Forecast, by world region	33
Chart 12: BBU and vBBU capacity deployed, 2022-2032	34
Chart 13: v BBU software revenue, 2022-2032	34
Chart 14: DU Capacity deployed, vDU vs. Dedicated Compute, 2022-2032	35
Chart 15: DU and vDU Instances Shipped, by base station generation	36
Chart 16: vDU Instances Shipped, by base station generation	36
Chart 17: vDU pricing per Gbps of capacity, 2022-2032	37
Chart 18: vDU software revenue, 2022-2032	38
Chart 19: vDU software revenue, by physical location	38
Chart 20: vDU software revenue, LTE vs 5G	39
Chart 21: vDU software revenue, Public vs Private networks	39
Chart 22: vDU software revenue, Perpetual license vs as-a-service revenue	40
Chart 23: vDU software revenue, by world region	40
Chart 24: CU capacity deployment, vCU vs. Dedicated Compute	41
Chart 25: vCU Pricing per Gbps of capacity, 2022-2032	42
Chart 26: vCU Revenue, 2022-2032	42
Chart 27: vCU Revenue, by data center location	43
Chart 28: vCU Revenue, LTE vs 5G vs 5.5/6G	43
Chart 29: vCU Revenue, Public vs Private Networks	44
Chart 30: vCU Revenue, Up-front License and service revenue	44
Chart 31: vCU Revenue, by world region, 2022-2032	45

FIGURES

Figure 1.	Employee count trends with major operators	11
Figure 2.	Overall view of virtualization of the DU	12
Figure 3.	Overall view of virtualization of the DU	14
Figure 4.	Architecture for AWS/DISH deployment	15
Figure 5.	Steps in evolution of Open vRAN	20
Figure 6.	CAPEX for 5G 'macro' deployment: DRAN, CRAN, vRAN, O-vRAN	21
Figure 7.	OPEX for 5G 'macro' deployment: DRAN, CRAN, vRAN, O-vRAN	22
Figure 8.	Case study Cumulative TCO comparison	23
Figure 9.	Timeline for vRAN commercialization	25

METHODOLOGY

For this report, Mobile Experts conducted a survey of more than 20 software suppliers, mobile operators, OEMs, and other stakeholders in the market. The short-term baseline forecast is based on the direct inputs from suppliers of virtual RAN software in commercial networks today, and from the top 30 operators worldwide which we consider to be candidates as vRAN customers.

Mobile Experts also used guidance from mobile operators and examples of recent major contracts, for pricing of vRAN solutions at a system level. Our database of radio hardware shipments is used to calculate the value of the hardware, isolating the value of the software represented in recent major contracts. Feedback on pricing for RAN capacity in India played a major role in our conclusions about comparative cost between dedicated RAN and vRAN as one example.

Future projections for vRAN are based on wider discussions with operators and the cost analysis that indicates real savings in the long-term life cycle of the 5G network. Market drivers and market challenges were assessed and both operators and suppliers were asked directly to gauge the impact of each factor.