
Semiconductors for BBU/DU/CU 2024

Joe Madden

April 2024

Semiconductors for BBU / DU / CU 2024

1	EXECUTIVE SUMMARY	6
2	MARKET BACKGROUND	7
	Market Drivers	7
	Capacity and Baseband Complexity	7
	Energy Efficiency	7
	Virtualization	8
	Open RAN standards	9
	Market challenges	10
	The Economics of Chip Design	10
	Open vRAN fragmentation	13
	Private Cellular Fragmentation	14
	Running RAN on NVIDIA GPUs	14
	China baseband processing – it's different there	14
	Overall trend in baseband processors	15
3	TECHNOLOGY FACTORS	16
	Baseband Requirements for 6G	16
	Architectural Options	16
	Energy Efficiency of Acceleration Options (In-line vs. Look-aside)	17
	New Spectrum for 5.5G and 6G	19
	Artificial Intelligence and Machine Learning (AI/ML)	20
4	BASEBAND SEMICONDUCTOR OUTLOOK	22
	System Level Mobile Infrastructure trends	22
	Baseband Semiconductor Revenue Outlook	23
	BBU Semiconductor Outlook	25
	DU Semiconductor Outlook	29
	CU Semiconductor Outlook	34
	AI Semiconductor Outlook	38
5	MARKET SHARES	41
6	ACRONYMS	44
7	METHODOLOGY	46

FIGURES

Figure 1:	Chart of improvement in GB/W per month, 1993 to 2023	8
Figure 2:	Cost to design+tape out baseband processor ASICs over time	11
Figure 3:	Total chip cost over an 8-year production cycle (ASIC vs CSSP vs FPGA vs ASSP)	12
Figure 4:	Total chip cost over an 8-year production cycle (lower volume scenario)	13
Figure 5:	Power consumption comparison, in-line vs. look-aside	19
Figure 6:	Likely 5.5G and 6G spectrum allocation by country	20

CHARTS

Chart 1:	Semiconductor Market Size in BBU, DU, and CU Applications, 2022-2032	6
Chart 2:	Global base station shipments, by air interface standard 2023-2029	22
Chart 3:	Total Mobile Capacity Deployment, 2022-2032	23
Chart 4:	Global Baseband IC revenue, by DU/CU/BBU, 2022-2032	23
Chart 5:	Global Baseband IC revenue, by air interface, 2022-2032	24
Chart 6:	Global Baseband IC revenue, by level of customization, 2022-2032	25
Chart 7:	Global BBU Capacity Shipped, 2022-2028	25
Chart 8:	BBU Units Shipped, 2022-2028	26
	BBU Semiconductor ASP, 2022-2028	
Chart 10:	BBU Semiconductor Revenue, 2022-2028	27
Chart 11:	BBU Semiconductor Revenue, by level of customization, 2022-2028	28
Chart 12:	BBU Semiconductor Revenue, 2G vs 3G vs 4G, 2022-2028	28
	Capacity deployed in the DU, 2022-2028	
Chart 14:	DU Shipments, vDU and Dedicated, 2022-2028	30
Chart 15:	DU Semiconductor Modules per DU, 2022-2028	30
Chart 16:	DU Semiconductor Modules shipped, 2022-2028	31
Chart 17:	DU Semiconductor Module ASP, 2022-2028	31
Chart 18:	DU Semiconductor Revenue, virtualized vs dedicated, 2022-2028	32
Chart 19:	DU Semiconductor Revenue, by level of customization, 2022-2028	33
Chart 20:	DU Accelerator Semiconductor Revenue, look-aside vs in-line, 2022-2028	33
Chart 21:	DU Semiconductor Revenue, LTE vs 5G vs 5G-Advanced, 2022-2028	34
Chart 22:	CU Capacity Deployed, Gbps, 2022-2028	35
Chart 23:	CU Shipments, 2022-2028	35
Chart 24:	Number of CU Semiconductor Modules per CU, 2022-2028	36
	CU Semiconductor Revenue, 2022-2028	
Chart 26:	CU Semiconductor Revenue, by customization, 2022-2028	37
	CU Semiconductor Revenue, by air interace, 2022-2028	
Chart 28:	Al adoption in baseband IC modules, 2022-2032	39
	AI dollar content in baseband IC modules, 2022-2032	
Chart 30:	AI revenue in baseband IC modules, DU and CU, 2022-2032	40
Chart 31:	Market shares in baseband semiconductors for infrastructure, 2023	41
Chart 32:	Market shares in BBU semiconductors, 2023	42
Chart 33:	Market shares in DU semiconductors, 2023	42
Chart 34:	Shipment shares in DU semiconductors, 2023	43

METHODOLOGY

To create estimates and forecasts for base station equipment shipments, Mobile Experts relies on direct input from more than 40 industry sources, including multiple top OEM vendors, mobile operators, and component suppliers.

Mobile Experts also used financial disclosures from publicly traded companies to assemble a quantitative view of the equipment market, and to establish estimates of the expected trends in the near future.

In particular, Mobile Experts uses a "top down and bottom up" approach to the base station transceiver forecast, in which inputs from the operators and OEMs are balanced against shipment data provided by key component suppliers. Several component suppliers participate in the Mobile Experts Data Sharing Program, in which they provide quarterly or annual shipment data on key components, which can help Mobile Experts to track shipments by frequency band.

This forecast begins with our forecast for shipments of radio hardware in the market (based on RF component numbers as noted above), and translates the number of radios to a number of semiconductor modules based on input from all semiconductor suppliers participating in the industry. Multiple interviews were conducted with each supplier to verify market share positions, pricing, and quantities for various scenarios.

Virtualization input was collected from more than 20 participants in the software market, including major OEMs, Open RAN layers, chip vendors, and many operators.

Capacity calculations include capacity for small cells, mm-wave deployments, and other secondary contributors to the RAN market... but the semiconductor estimates are based on the macro and massive MIMO market, excluding small cells and mm-wave.

Our segmentation into "DU" and "CU" categories is a rough division and is not as clean as we would hope... because each of the major OEMs has a different partitioning of which functions reside in the RU, DU, and CU. We use the physical box as our definition of "RU", "DU", and "CU", and do not adhere strictly to any specific fronthaul or other interface specification here.

Note that the Mobile Experts forecast model extends through 2032 to comprehend the changes coming with 5.5G and 6G spectrum. We show a five-year forecast in our charts here because architectural questions such as DU/CU partitioning and RISC-V adoption are difficult to see beyond five years.