# Semiconductors for Remote Radio Heads 2023



## Semiconductors for RRH 2023

| 1 | EXECUTIVE SUMMARY                                         | 9  |
|---|-----------------------------------------------------------|----|
|   | Market status                                             | 9  |
|   | Technology Adoption                                       | 10 |
|   | Influence of O-RAN                                        | 10 |
| 2 | MARKET BACKGROUND                                         | 12 |
|   | New 6-7 GHz Spectrum                                      | 12 |
|   | Spectrum Utilization in the US                            | 13 |
|   | Other Spectrum Options in the US                          | 16 |
|   | India Market                                              | 16 |
|   | China Market                                              | 17 |
|   | Impact of Inflation on Radio Unit Semiconductor Suppliers | 17 |
| 3 | TECHNOLOGY FACTORS                                        | 18 |
|   | Beamforming Options for Sub-7 GHz                         | 18 |
|   | Beamforming Choices at 6.5 GHz                            | 19 |
|   | GaN for Power Amplifiers: GaN on SiC or Si                | 20 |
|   | Wider Channel Bandwidth                                   | 21 |
| 4 | Semiconductor & Architecture Trends                       | 23 |
|   | Radio Unit Design                                         | 23 |
|   | Primary Processors for DFE, Low-PHY, and Beamforming      | 23 |
|   | Processor Supply in China                                 | 30 |
|   | Discrete Power Amplifiers vs Integrated RF Modules        | 31 |
| 5 | 2022 Review and Market Shares                             | 33 |
|   | Power Amplifiers                                          | 33 |
|   | Filters                                                   | 35 |
|   | Primary Processors                                        | 36 |

|   | Discrete Data Converters (ADC/DACs)        | 37 |
|---|--------------------------------------------|----|
|   | PLLs, VCOs, Timing Reference               | 39 |
|   | Small-Signal RF Components                 | 39 |
|   | Costed Block Diagram for 32T32R Solution   | 41 |
| 6 | EQUIPMENT AND SEMICONDUCTOR OUTLOOK        | 42 |
|   | System Level Mobile Infrastructure trends  | 42 |
|   | RRH Semiconductor Revenue Outlook          | 43 |
|   | Power Amplifier Outlook                    | 44 |
|   | Filter Outlook                             | 51 |
|   | Primary Processor Outlook                  | 52 |
|   | AI in the RU                               | 54 |
|   | Secondary Processor Outlook                | 54 |
|   | Discrete Data Converter (ADC/DAC) Outlook  | 55 |
|   | PLL, VCO, AQM, and Small Signal RF Outlook | 57 |
| 7 | COMPANY PROFILES                           | 60 |
|   | Airgain:                                   | 60 |
|   | Akoustis:                                  | 60 |
|   | AMD (Xilinx):                              | 60 |
|   | Ampleon:                                   | 60 |
|   | Analog Devices:                            | 60 |
|   | Anlogic:                                   | 60 |
|   | ArgoSemi:                                  | 60 |
|   | Arctic Semiconductor:                      | 61 |
|   | Bowei:                                     | 61 |
|   | Broadcom (Avago):                          | 61 |
|   | Ceva DSP:                                  | 61 |
|   | CREE/Wolfspeed:                            | 61 |
|   | CTS:                                       | 61 |

| Datang:                    | 61 |
|----------------------------|----|
| Dynax Semiconductor:       | 61 |
| E-ASIC (now Intel)         | 61 |
| Epson:                     | 62 |
| Ericsson:                  | 62 |
| Finwave:                   | 62 |
| Fujitsu:                   | 62 |
| Gallium Semiconductor:     | 62 |
| Guerrilla RF:              | 62 |
| HiSilicon:                 | 62 |
| Huawei Technologies:       | 62 |
| Infineon:                  | 63 |
| Intel:                     | 63 |
| KMW, INC:                  | 63 |
| Kyocera:                   | 63 |
| Lattice Semiconductor:     | 63 |
| Lions Taiwan Technology:   | 63 |
| Macom:                     | 63 |
| Marvell Technology:        | 63 |
| Maxim Integrated Products: | 63 |
| Maxlinear:                 | 64 |
| Mitsubishi:                | 64 |
| MobiX Labs                 | 64 |
| Murata:                    | 64 |
| NanoSemi:                  | 64 |
| National Instruments:      | 64 |
| NEC:                       | 64 |
| NGK:                       | 64 |

| Nokia:                                       | 65 |
|----------------------------------------------|----|
| NXP Semiconductor:                           | 65 |
| Pivotone:                                    | 65 |
| Qualcomm:                                    | 65 |
| Qorvo:                                       | 65 |
| Renesas:                                     | 65 |
| RFHIC:                                       | 65 |
| RJR Technologies:                            | 66 |
| Rogers Corporation:                          | 66 |
| Samsung:                                     | 66 |
| Soitec:                                      | 66 |
| Spirit Semiconductor:                        | 66 |
| Sumitomo Electric Device Innovations (SEDI): | 66 |
| Skyworks Solutions:                          | 66 |
| Tagore:                                      | 66 |
| Texas Instruments:                           | 67 |
| TTM Technologies:                            | 67 |
| Wavepia:                                     | 67 |
| Wavice:                                      | 67 |
| WIN Semiconductor:                           | 67 |
| Wolfspeed:                                   | 67 |
| ZTE:                                         | 67 |
| ACRONYMS                                     | 68 |
| METHODOLOGY                                  | 71 |

8

9

### **FIGURES**

| Figure 1: 6 -7 GHz Band Description: As Licensed or as Un-Licensed              | 13 |
|---------------------------------------------------------------------------------|----|
| Figure 2: Possible Spectrum Allocation for 6 -7 GHz Band, by Region             | 13 |
| Figure 3: US Spectrum Above 2 GHz Summary                                       |    |
| Figure 4: US Spectrum: 2.5 GHz through 4.0 GHz                                  |    |
| Figure 5: C-Band spectrum allocation outside US                                 |    |
| Figure 6: C-Band spectrum in US                                                 |    |
| Figure 7: Block Diagram: Hybrid Beamforming in sub-6 GHz bands                  |    |
| Figure 8: Power Amplifier Output levels with High Count Antenna Elements        | 21 |
| Figure 9: Block Diagram: Hybrid Beamforming in sub-6 GHz bands                  | 21 |
| Figure 10: O-RAN Functional Splits                                              | 26 |
| Figure 11: Primary Processor Integration Options (mMIMO)                        |    |
| Figure 12: Broadcom: Custom Silicon Function Integration in RU                  | 29 |
| Figure 13: AMD/Xilinx: Example of Integrated Processors and Data Converters     | 29 |
| Figure 14: Analog Devices: Example of Integrated Processors and Data Converters | 30 |
| Figure 15: RF Component Block Diagram for a Radio Unit                          | 31 |
| Figure 16: Front End Module Concept for 6.5 GHz Designs                         | 32 |
| Figure 17: Table of Small Signal RF Vendors and Macro RRH revenue, 1H'2023      | 40 |
| Figure 18: 32T32R Costed Block Diagram                                          | 41 |
| Figure 19: Block Diagram showing Reference Power Levels inside RRH              | 48 |
| Figure 20: Table of Reference Power Levels inside RRH                           |    |
| Figure 21: PA Power Level Definitions                                           |    |
| Figure 22: Definition of Reportable Regions                                     | 72 |

#### CHARTS

| Chart 1:   | Semiconductor Market Size in RRH Applications, by component type, 2022-2028 | 11 |
|------------|-----------------------------------------------------------------------------|----|
| Chart 2:   | Transceiver shipments, by RF bandwidth supported, 2022-2028                 | 22 |
| Chart 3: I | Power Amplifier Shipments, Breakdown by Semiconductor Process Used          | 33 |
| Chart 4:   | Power Amplifier Market Shares, 2022                                         | 34 |
| Chart 5:   | Power Amplifier Market Shares, 2Q2023                                       | 35 |
| Chart 6:   | 5G Filter Shipments by Technology, 2022-2028                                | 36 |
| Chart 7:   | Primary Processor Market Shares in RRH, 2022                                | 36 |
| Chart 8:   | Secondary Processor Market Shares, 2022                                     | 37 |
| Chart 9:   | Discrete Analog-to-Digital (ADC) Market Shares, 2022                        | 38 |
| Chart 10:  | Discrete Digital-to-Analog (DAC) Market Shares, 2022                        | 38 |
| Chart 11:  | PLL/Timing Market Shares in RRH, 2022                                       | 39 |
| Chart 12:  | Small Signal RF Market Shares in RRH, 1H2O23                                | 40 |
| Chart 13:  | Global base station shipments, by air interface standard 2022-2028          | 43 |
| Chart 14:  | Global Semiconductor Market for RRH, 2022-2028                              | 44 |
| Chart 15:  | Power Amplifier Market for RRH, 2022-2028                                   | 45 |
| Chart 16:  | Power Amplifier Market, by semiconductor process technology, 2022-2028      | 46 |
| Chart 17:  | Transceiver shipments, by RF power level, 2022-2028                         | 46 |
| Chart 18:  | Power Amplifier Revenue, by Radio Power Level, 2022-2028                    | 47 |
| Chart 19:  | Power Amp Line-Up Values by Transceiver Power Levels, 2022-2028             | 47 |
| Chart 20:  | Power Amplifier Shipments by High/Medium/Low power PAs, 2022-2028           | 50 |
| Chart 21:  | 5G Filter Revenue by Technology, 2022-2028                                  | 51 |
|            | Primary Processor unit Shipments, 2022-2028                                 |    |
| Chart 23:  | Primary Processor revenue for RRH, 2022-2028                                | 53 |
| Chart 24:  | Primary Processor Breakout revenue for RRH, 2022-2028                       | 53 |
| Chart 25:  | Secondary Processor Revenue for RRH, 2022-2028                              | 55 |
| Chart 26:  | Discrete ADC Revenue in Macro RRH, 2022-2028                                | 56 |
|            | Discrete DAC Revenue in Macro RRH, 2022-2028                                |    |
| Chart 28:  | PLL/Timing Revenue in Macro RRH, 2022-2028                                  | 57 |
|            | PLL/Timing Dollar Content per transceiver, 2022-2028                        |    |
| Chart 30:  | Small Signal RF Revenue in Macro RRH, 2022-2028                             | 58 |
| Chart 31:  | Small Signal RF Dollar Content per transceiver, 2022-2028                   | 59 |

Cover page: pexels.com, Sam Kolder

#### **METHODOLOGY**

To create estimates and forecasts for base station equipment shipments, Mobile Experts relies on direct input from more than 40 industry sources, including multiple top OEM vendors, mobile operators, and component suppliers.

Mobile Experts also used financial disclosures from publicly traded companies to assemble a quantitative view of the equipment market, and to establish estimates of the expected trends in the near future. While there will be increases in prices (and associated recognized revenue) due to rising costs of raw materials, the on-going impact of inflation is not yet explicitly factored into the Mobile Experts forecast. We have begun with an initial adjustment to our price erosion expectations for all semiconductor components in the 2022-2024 timeframe.

In particular, Mobile Experts uses a "top down and bottom up" approach to the base station transceiver forecast, in which inputs from the operators and OEMs are balanced against shipment data provided by key component suppliers. Several component suppliers participate in the Mobile Experts Data Sharing Program, in which they provide quarterly or annual shipment data on key components, which can help Mobile Experts to track shipments by frequency band.

The semiconductor content in the transceivers was assessed by interviewing multiple companies in each semiconductor segment, gathering information on application of the devices, performance trends, market shares, and costs. Each semiconductor type was assessed for the cost in single-mode and multi-mode radios, in each air interface standard, in order to determine the total market size for each semiconductor type across the total number of transceivers. Data for different components are compared to improve accuracy (i.e. the power amplifiers, processors, and data converters should all be aligned to the same total shipment numbers).

Transceivers are broken out by the physical configuration (2T2R, 4T4R, 64T64R) as well as by power level and by frequency band. A massive MIMO RRH with two 64T64R panels is counted as a single 128T128R in our forecast. Note that Mobile Experts uses *transceivers* as our primary tracking metric, not base stations, in order to have the most accurate forecast possible for RF devices.

In addition, multimode transceivers are listed according to the air interface standard used during initial deployment. (An HSPA/LTE capable transceiver that is shipped initially for 3G will be listed in the 3G category despite any plans for software upgrades to LTE in the future).

Processors are divided into "primary" and "secondary" categories according to the placement of the main-path RF processing. PHY processing and any main-path RF processing defines the "primary" processor in a split-baseband RRH.

Primary processor functions are comprised of Digital functions (CFR, DPD, DUC, DDC etc) and data converters (DAC, ADC functions). To avoid confusion, we have used the term 'data converter' to identify the integrated module that includes multi-channel DACs and ADCs. In contrast to the term 'transceiver' which we use to identify a single Tx/Rx signal path.

Power transistors are listed as either High Power, Medium Power or Low Power devices based on peak power handling capabilities.

Market shares, shipments and forecasts are reported by geographic region.

| Region                   | Included Countries                                  |
|--------------------------|-----------------------------------------------------|
| North America (NA)       | USA and Canada                                      |
| Latin America (LatAm)    | Mexico through South America, Including Caribbean   |
| Europe (EU)              | Western and Eastern Europe, Including Russia        |
| China                    | China, including Hong Kong                          |
| Asia Pacific (APAC)      | India through Australia/Micronesia, Excluding China |
| Middle East/Africa (MEA) | Pakistan and Turkey through Africa                  |

Figure 1: Definition of Reportable Regions

Source: Mobile Experts